# Utilization of VIGS to identify genes involved in resistance to stress in soybeans

Soybean Breeder's Workshop – February 2013

#### **Outline**

- BPMV VIGS system
- Soybean rust defense gene networks
- Soybean mosaic virus defense gene networks
- Other pathosystems
- Conclusions

#### What is VIGS?

RNA of viral origin

Virus genome

VIGS is based on a natural antiviral defense mechanism that is intrinsic to most eukaryotes

This mechanism functions by degrading double stranded RNA molecules



Degraded viral RNA

#### What is VIGS?

VIGS is based on a natural antiviral defense mechanism that is intrinsic to most eukaryotes

This mechanism functions by degrading double stranded RNA molecules

System can be targeted to degrade any RNA including host mRNA



Virus genome +

a plant gene

Double strand

RNA of viral origin

Degraded mRNA – knock out of gene expression

# Virus induced gene silencing – Bean pod mottle virus

T-Nos

32K 58K 24K 87K

pBPMV-35S RNA1





**Chris Zhang** 

#### **BPMV** vectors



#### **VIGS** procedure

Insert fragment of target gene into BPMV VIGS vector







Infect unifoliolate leaves of soybean plants with BPMV-VIGS



3 weeks later initiate pathogen assays on 3<sup>rd</sup> or 4<sup>th</sup> trifoliolate leaves







# PDS silencing in Williams 82 leaves



# **Stem**

Mock



**Bright field** 



Empty vector





Silencing vector



Section taken between 2<sup>nd</sup> and 3<sup>rd</sup> trifoliate on 21<sup>st</sup> day post inoculation. 80 micrometer thick sections. Uniform exposure (500 ms) Uniform magnification

Juvale et al. (2012) Mol Plant Path. 13:1140-1148

# Leaf petiole

Mock





**Empty** vector



Silencing vector





Petiole from second trifoliate was sectioned on 21st day post inoculation. 80 micrometer thick sections Uniform exposure (500 ms) **Uniform magnification** 

Juvale et al. (2012) Mol Plant Path. 13:1140-1148

# **Flowers**



Equal exposure (.5 sec) Equal magnification

# **Roots**



#### Discovery of genes involved in soybean defense

Candidate defense genes

Gene function analysis

Soybean defense networks



#### http://www.soybase.org/SoyVIGS/Welcome.html

Welcome

SoyVIGS Database

Collaborators

**Publications** 

Funding

# SoyVIGS: Virus Induced Gene Silencing in Soybean







#### **Examples of VIGS in Soybean**

- A. BPMV VIGS of phytoene desaturase (Pds) results in a photobleaching phenotype.
- B. BPMV VIGS of a target gene causes a distorted leaf phenotype
- C. BPMV VIGS of candidate Rpp4 resistance genes causes lost of resistance to Phakopsora pachyrhizi (Asian Soybean Rust).

#### Virus Induced Gene Silencing for Soybean

## **SoyVIGS Database**

Welcome

In the spaces below you will be able to browse or search the SoyVIGs database for entries based on their Glyma (e.g. Glyma06g05260) or laboratory (e.g. 21H11) identifiers.

#### Browse the SoyVIGS database:

The button below will allow you to retrieve a HTML representation of the complete database.

Browse the database

#### Search the SoyVIGS database:

To search for one or more constructs based on various fields choose a field from the list below:

Glyma Gene Identifier +

Cut-and-paste a list of identifiers in the input field below:



Search the database

## Asian soybean rust



*Rpp1* – Immune reaction

Rpp1b - Red-brown reaction

Rpp2 - Red-brown reaction

Rpp3 - Red-brown reaction

Rpp4 - Red-brown reaction

*Rpp5* – Immune & Red-brown reaction



**Ajay Pandey** 

# Expected phenotypes

Incompatible interaction

**Compatible interaction** 



# Loss-of-resistance phenotypes of 11 candidate genes in *Rpp2* plants (140 screened)



#### Relative fungal growth in silenced plants



### Verification of gene silencing



#### Rpp2 resistance network



Pandey et al. (2011) Mol. Plant Microbe Interact. 24: 194–206

### Soybean mosaic virus





*Rsv1* – Extreme resistance

*Rsv3* – Restrict long-distance movement

Rsv4 – Delayed susceptibility

**Chris Zhang** 

#### **SMV** – soybean interaction

- Rsv1
- Confers extreme resistance to SMV-N
- No detectable virus replication or movement
- PI 96983, L78-379 (Rsv1), Williams (rsv1)



No GUS staining in *Rsv1* plants

## **Expected loss-of-resistance phenotype**



#### Identification Rsv1 resistance gene candidates













Rsv1 VIGS of Rsv1



SMV GUS infection foci on *Rsv1* genetic background

# Eight candidate genes required for *Rsv1* function (82 BPMV constructs screened)



# Verification of gene silencing



# Rsv1 signaling network



#### Budding soybean defense gene network



#### Other soybean pathosystems under exploration using VIGS

# Sclerotinia – lignin pathway constructs



Courtesy Craig Grau

#### Soybean cyst nematode



**Courtesy Thomas Baum** 

#### **Sudden Death Syndrome**

Resistant



Susceptible



Courtesy Leonor Leandro

Cloning of gene at *Rhg4* locus for resistance to SCN encoding a serine hydroxymethyltransferase

Liu et al., Nature 492:256-260

# **Conclusions**

- BPMV VIGS is potentially effective gene silencing tool in a variety of tissues
- Library of BPMV VIGS clones: http://www.soybase.org/SoyVIGS/Welcome.html
- 11 genes required for Rpp2 resistance to Asian soybean rust
- 8 genes required for Rsv1 resistance to Soybean mosaic virus
- Other pathosystems are under exploration utilizing VIGS

# Collaborators

#### IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY





#### Plant Path. & Micro.

John Hill
Steve Whitham
Thomas Baum
Leonor Leandro
Chunquan (Chris) Zhang
Jianzhong (JZ) Liu
Parijat Juvale
Chunling Yang
Jaime Dittman
Al Eggenberger
Heidi Horstman
Silvia Cianzio

Univ. Wisconsin Craig Grau

**Univ. Minnesota**Dean Malvick

**Univ. Missouri**Melissa Mitchum
Pramod Kandoth

#### FDWSU, Ft. Detrick, MD

Kerry Pedley
Ajay Pandey
Mandy Kendrick
Amy Ruck
Andrea Luquette
Reid Frederick
Kathy Schneider



Michelle Graham Randy Shoemaker Rex Nelson

#### **Southern Illinois University**

Shiming Liu Kahlid Meksem Aziz Jamai

#### **Londrina Brazil**

Ricardo Abdelnoor Fran Guimaraes Danielle da Silva





