Large-Scale Genome Re-sequencing

Henry T. Nguyen

National Center for Soybean Biotechnology
University of Missouri

Funding support:
USDA-NIFA, the United Soybean Board,
and the Missouri Soybean Merchandising Council

Applying Next Generation Sequencing to Molecular Mapping

- Sequencing-based genotyping approaches
 - whole genome resequencing in rice (WGR) (Huang et al: 2009; Xie et al. 2010)
 - reduced representation of sequencing
 - A. Maize: genotyping by sequencing (GBS). (Elshire et al. 2011)
 - B. D. *simulans*: multiplexed shotgun genotyping (MSG) (Andolfatto et al. 2011)
 - C. Stickleback: sequencing of restriction-site associated DNA tag (RAD) (Baird et al. 2008)
- Advantages of sequencing-based genotyping approaches
 - genotyping large amount of loci in many individuals
 - Identified SNPs can be validated by their segregation in progenies
 - more accurate
 - cost efficient
 - fast

Objectives of this Study

- Identify high quality SNPs/Indels and reveal landscapes of SNP distribution
- Develop a genotyping approach based on low coverage sequencing for soybean QTL mapping
- Construct a high density maps leading to identifying and cloning genes/QTLs for traits of agronomic importance

Materials

 Forrest x Williams 82 (FW82) population 499 RILs

Target traits: soybean cyst nematode (SCN) seed size

 Magellan x PI 438489B (MPB) population 246 RILs

Target traits: soybean cyst nematode (SCN)

root knot nematode (RKN)

Reniform nematode (RN)

protein and oil content

root morphology

isoflavones

seed size

Ten additional RIL populations targeting different traits

Experimental Design

Forrest x Williams 82 Genetic Map

- Forrest and Williams 82 represent the southern and northern US soybean base, respectively.
- Williams 82 is the reference genome.
- Many genomic and genetic resources are available for both genotypes.
- 1,025 recombinant inbred lines (RILs) are available.
- A core set of 376 RILs were used to construct the framework map which includes a total of 986 markers; 471 SSRs and 515 SNP markers.
- About 5,000 SNP markers are being added to this genetic map using Illumina SNP array, in collaboration with Dow AgScience.

Wu et al. 2011.

Re-sequencing of Parental Lines (Forrest, W82)

							Genic SNP					
Sequence			SNP			CDS						
	(Gb)	Coverage	Depth	Total	homo	hete	5'-UTR	Intron	syn	non-syn	3'-UTR	
Williams 82_	MO 9.4	94.4%	7.7X	86.281	13,172	73,109	0	1,643	575	307	0	
Forrest	15.9	87.6%	12.4X	681,282	505,237	176,045	0	64,184	13,506	18,655	0	

homo: homozygous; hete: heterozygous; syn: synonymous; non-syn: non-synonymous

- 86,281 SNPs were identified between Williams 82_MO and the Williams 82 reference genome.
- Considerable intra-cultivar variances (nucleotide, structure, and gene content) were documented in Williams 82 (Haun et al. 2011).
- More than 600,000 SNPs identified between the two parents of the mapping population.
- 14% of total SNPs were genic and 4.7% of them resided in coding regions.

SNPs Distribution in Soybean Genome Forrest x Williams 82 Population

- Uneven distribution of SNPs
- SNPs per chromosome range from 6,320 (Chr. 11) to 46,835 (Chr. 18)
- 37,820 SNPs segregating with an allele ratio of 1:1 were used to construct bin map

Distribution of SNP Markers on Chromosome 9

- Window size: 200 Kb
- Few SNPs found in centromere, telomere, and highly repetitive regions

Bin Map of 500 RILs from FW82 Population

Total bins: 3,356 Total SNPs: (37,820 SNPs) Median bin size: 157 Kb

Summary – Forrest x W82 Population

- A total of 681,282 SNPs were identified which were not evenly distributed in soybean genome.
- Using 37,820 SNPs that segregated with an 1:1 allele ratio in the FW82 RIL population, 3,356 bins were identified and used to construct the bin map.
- Average bin size is 157 kb.
- Recombination cold spot and hot spots were identified.
- This genotyping by sequencing approach enables the mapping of QTLs/genes to a smaller region (here 157 Kb) verses traditional mapping methods that typically produce regions of 10-20 cM (equivalent to 2-4 Mb).

Re-sequencing of Parental Lines

							Genic SNP				
Sequence			SNP			CDS					
	(Gb)	Coverage	Depth	Total	homo	hete	5'-UTR	Intron	syn n	on-syn	3'-UTR
Williams 82	_MO 9.4	94.4%	7.7X	86,281	13,172	73,109	0	1,643	575	307	0
Forrest	15.9	87.6%	12.4X	681,282	505,237	176,045	5 0	64,184	13,506	18,655	0
Magellan	16.4	95.2%	13.5X	661.386	463,662	197,724	2,108	51,047	10,058	13,392	4,220
PI438489B	17.1	93.1%	13.5X	<mark>1,237,794</mark>	1,006,361	233,433	3 4,781	118,867	22849	30,139	9,814

homo: homozygous; hete: heterozygous; syn: synonymous; non-syn: non-synonymous

- Considerable intra-cultivar variances were identified in Williams 82.
- Significantly more SNPs (2-fold) were found in PI438489B
- 12.0-15.1% of total SNPs were genic and 2-2.4% of them are nonsynonymous (which may change the functions of genes).

Re-sequencing of the MPB Recombinant Inbred Line (RIL) Population

67.6 Gb sequence
Range: 141 – 458Mb/RIL
Mean: 275Mb/RIL

Depth: 0.1-0.31X (Coverage: 8.8-24.8%) Mean: 0.19X (16.2%/RIL)

Homozygous SNPs Range:16,705-74,756 Mean: 42577

SNPs Distribution in Soybean genome (MPB Population)

- Total SNPs between two parents (Magellan x and PI 438489B): 1,464,938
- Uneven distribution of SNPs.
- SNPs per chromosome range from 29,500(Chr. 11) to 110,760 (Chr. 18).
- 195,375 SNPs segregating with an allele ratio of 1:1 were used to construct the bin map.

Distribution of SNP Markers (MPB pop)

Window size: 100Kb on the physical map of W82 reference genome

Distribution of Indel Markers (MPB Pop)

Red: homozygous; blues: heterozygous

Indels:

PI438489B: 317,118

Magellan: 156,385

Construction of Bin Map

 Bin is the chromosome interval between 2 adjacent recombination breakpoints.

Bin Map of 246 RILs from MPB Population

Total bins: 3510; Total SNPs: 195,375 Median bin size: 98.2Kb

Recombination Hot/Cold Spots

Window size: 200KB

Genetic Maps with Bins Serving as Markers

Total genetic distance: 2314 cM

Positions of bins are in perfect agreement with their physical locations

Mapping QTL for Root Knot Nematode Resistance

Chr.	Bin	Bin size	LOD	R ²	Add. Effect
8	113	340 Kb (~ 1.7 cM)	5.3	7.4	0.42
10	10	29.7 Kb (~ 0.15 cM)	15.1	23.2	0.75
13	131	7.9 Kb (~ 0.04 cM)	4.1	5.6	0.4

Pinpoint the Gene Underlying the Major QTL for Root Knot Nematode

- Four genes in Chr10_bin10
 - three genes were annotated as "cell-wall-associated enzyme"
 - one gene was annotated as "protein of unknown function"
- Identification of the candidate gene
 - 97 SNPs/Indels were identified in Chr10_bin10
 - 15 genic SNPs/Indels were identified in the CDS regions of two genes
 - Candidate SNPs (nonsynonymous SNP) are identified
- Next:
 - Cloning the genes
 - Functional analysis

Summary

- The genotyping approach developed in this study is reliable and highly efficient. It is accurate, fast and cost-effective.
- Recommendations for sequencing-based genotyping in soybean:
 - cross pattern: cultivar x PI
 - sequencing of parental lines: 2X coverage
 - sequencing of RILs: ~0.2X coverage
 - multiplex: 48 RILs/library

Genome-wide association study (GWAS)

- HapMaps constructed with microarray-based methods suffered substantial ascertainment bias
- Parallel and comprehensive SNP discovery and genotyping by sequencing
 - Huang et al. sequenced a set of rice germplasm at low coverage (~1X).
 - QTL for important traits were mapped

(Huang et al. 2010; 2011)

What Can a Large Set of Sequenced Germplasm Lines Do for Soybean Breeders?

Genome-wide association study (GWAS)

- GWAS enables the mapping of causative loci to single nucleotide changes (QTN or QTIndel)
- The resulting HapMap of this study will provide a complete view of the haplotype structure of soybean, pave the way for GWAS studies, and identify alleles underpinning phenotypic diversity across the whole genome

Broad impacts on soybean breeding

- Distinguish all genetic differences between any two lines. Make more precise crosses.
- Identify rare alleles associated with valuable variants/mutations
- Identify diagnostic SNPs/Indels for marker-assisted selection

Resequencing Studies in Soybean

- Lam et al. re-sequenced a total of 17 wild and 14 cultivated soybean genomes (5X depth; 90% coverage)
 - 5.9 million SNPs in wild soybean
 - 4.2 million SNPs in cultivated soybean
- Qiu et al. sequenced 25 accessions (per. comm.)
- Shoemaker et al. (87 ancestral lines and milestone cultivars in the US)

Vision for the future ...

Re-sequencing a Core Set of USDA Soybean Germplasm

Goals

- sequence 3,000 germplasm lines/cultivars with 10 to 15 X redundancy and construct a genomewide HapMap
- > extend to 5,000 soybean lines
- multiple reference genomes: sequence, assemble and annotate 10 diverse soybean lines (80-100X) for structural and functional studies
- > Public-private partnership

Current Status

- 10 accessions have been sequenced (>10X depth).
- 100 PIs/cultivars will be sequenced soon.
- 300 Pls will be sequenced for WGAS study.
- Large scale resequencing project (3,000 5,000 soybean germplasm lines) to be started in 2013.
- User-friendly tools have been developed by Prof. Dong Xu's group to browse, search and visualize sequence variations (SoyKB).

Acknowledgements

University of Missouri

- Xiangyang Xu
 - Dong Xu
- Trupti Joshi
 - Tri Vuong
- Jessica Frank
- Grover Shannon
 - M.S. Pathan

Beijing Genome Institute

- Ye Tao
- Liang Zeng

University of Georgia

- Roger Boerma
- Steve Finnerty

Next?

Nanopore sequencers

48 KB genome of bacteriophage could be sequenced as a complete fragment

Future vision is to sequence an entire human genome in 15 minutes

