Molecular interactions between soybean aphid and resistant soybean

Raman Bansal,

Rouf Mian, Om Mittapalli,

Lucia Orantes, Andy Michel

Soybean Aphid Biotype Genetics, Genomics, Adaptation

- How do they arise? What are changes in gene function or expression for biotype adaptation?
 - Genomic and transcriptomic approaches

- Where do biotypes exist, in what proportions and how far can they spread?
 - Population genetic studies, molecular markers and diagnostics

Soybean Aphid Biotype Genetics, Genomics, Adaptation

- How do they arise? What are changes in gene function or expression for biotype adaptation?
 - Genomic and transcriptomic approaches

- Where do biotypes exist, in what p and how far can they spread?
 - Population genetic studies, molecula and diagnostics

Host plant resistance & aphid biotypes

B1 B2 B1 B2 B3

-How do soybean aphids react to feeding on Rag1 on a transcriptomic level?

-RNASeq of B1 on Rag1 and Susceptible No Rag Rag1 Rag1

RNA-Seq

Sequence all RNA in samples and compare

		3				
	А	В	С	D	Е	
1	Locus_Name	Sequence	Description	Count-B1	Count-B2	
2	GMAGBIIRR000472	TATGTGGGCAAGA	PREDICTED: similar to GH03753p [Acyrthosiphon pisum]	100	100	
3	GMAGBIIRR000058	CGTTTAAAAAAGT	PREDICTED: similar to predicted protein [Acyrthosiphon pisum]	50	200	
4	GMAGBIIRR000875	AATGCAATACGGG	PREDICTED: similar to reverse transcriptase (put.); putative [Acyrthosiphon pisum]	0	200	
5						

Paired RNA-Seq using Illumina's Genome Analyzer-II

Individual reads mapped to reference transcriptome* using CLC Genomics Workbench

RPKM (expression value) of each gene calculated in all 6 libraries

Differentially expressed genes in two treatments identified using Baggerley's test (*P* < 0.01)

Sequences for differentially expressed genes annotated using blast2go

RNA extraction and cDNA libraries preparation

New born nymphs fed for 12 hrs (3 Reps for each)

Susceptible: Resistant: No Rag1 Rag1

*Reference transcriptome contained 76883 high quality ESTs from soybean aphid assembled using adult and nymph cDNA libraries

Mapping statistics

Treatment*	Replicates	Total reads	Mapped reads	Uniquely mapped reads
S	R1	19,043,918	15,277,859	14,567,880
	R2	28,579,810	24,070,793	22,979,265
	R3	15,795,962	13,352,987	12,773,858
R	R1	21,354,822	17,928,145	17,015,329
	R2	11,599,306	9,866,821	9,339,220
	R3	35,176,984	29,809,274	28,296,387

^{*}Fed on susceptible (S) and resistant (R) plants

SBA fed with Rag1 plants

Molecular function of upregulated genes

Cytochrome P450

- Monooxygenase enzymes of 45-55 kDa found in all living organisms
- Specialized in the metabolism of endogenous substrates (hormones, pheromones etc.) and exogenous compounds (insecticides, allelochemicals etc.)

Genes for detoxification enzymes identified in soybean aphid transcriptome

Gene family	#Occurrence		
Cytochrome P450	101		
Glutathione-s-transferase	18		
Esterase/carboxylesterase	45		
Alkaline phosphatase	20		
Aminopeptidase	56		
Cadherin	16		
γ-Glutamyl-transpeptidase	30		
Thioredoxin	27		
Glutaredoxin	8		

Up-regulation of detoxification genes in soybean aphid feeding on resistant plants

Sequence Name	Length (bp)	Best hit accession no.	Family & clade	RNA-Seq fold change	qPCR fold change
contig19107	972	XP_001945100.2	6a14, CYP3	5.64	3.46
Contig20248	1086	XP_001952450.1	6a2, CYP3	4.31	2.19
Contig20782	1227	XP_003248187.1	6a2, CYP3	3.64	1.37
Contig71947	2570	XP_001947923.1	18a1, CYP3	10.26	2.91
Contig17427	2302	XP_001943923.2	4C1, CYP4	6.01	3.68
Contig72606	1779	XP_001946384.2	6a13, CYP3	2.90	2.51
Contig56787	185	XP_001951034.1	4C1, CYP4	2.68	1.41
Contig72642	1275	XP_974252.1	302a1, MiCYP	1.66	1.36
Contig17752	1231	XP_001946570.2	E4, Esterase	3.13	1.37
Contig43771	1669	NP_001156274.1	De, GST	2.58	2.27
Contig59162	1191	AAV31410.1	Sg, GST	1.43	1.36

Summary

- Measured the gene expression in soybean aphid feeding on resistant and susceptible plants
- Majority of differentially expressed genes belong to binding and catalytic categories
- Selective regulation of detoxification genes in soybean aphid feeding on Rag1 plants explains antibiosis mode of resistance (through allelochemicals) in these plants

Soybean Aphid Biotype Genetics, Genomics, Adaptation

- How do they arise? What are changes in gene function or expression for biotype adaptation?
 - Genomic and transcriptomic approaches

- Where do biotypes exist, in what proportions and how far can they spread?
 - Population genetic studies, molecular markers and diagnostics

Movement of Soybean Aphids

- Dispersal/Migration Events:
 - 1) Spring colonization from buckthorn to soybeans
 - 2) Asexual reproduction, population increase
 - 3) Widespread dispersal among all fields
 - 4) Fall migration back to buckthorn—sexual reproduction

Genetic Approach to Dispersal and Migration

- Hypothesis: Founder effect occurs in spring soybean colonization. Predict:
 - Low genetic diversity (ie. Low number of clones or distinct genotypes)
 - High relatedness among aphids from a population
 - High genetic differences among populations
 - Restricted dispersal related to proximity to buckthorn

Genetic Approach to Dispersal and Migration

- Hypothesis: Late season dispersal spreads genetic variation. Predict:
 - High genotypic diversity (number of clones)
 - Low relatedness among aphids within a population
 - Slight differences among populations

Genetic Approach to Dispersal and Migration

- Use 6 microsatellite markers and 24 single nucleotide polymorphisms
- 8 populations collected twice (early and late) from the same field

		Early Collection	Late Collection	
Population	Abbreviation	Date	Date	
South Dakota	SD	June 13, 2009	July 30, 2009	
Minnesota-Lamberton	MN-L	June 23, 2009	Sept 8, 2009	
Minnesota-Rosemount	MN-R	June 3, 2009	Aug 26, 2009	
Wisconsin	WI	June 22, 2009	Sept 8, 2009	
Michigan	MI	June 10, 2009	Sept 14, 2009	
Ontario	ON	July 6, 2009	Aug 25, 2009	
Ohio-Wooster	OH-W	June 15, 2009	Aug 24, 2009	
Ohio-Cortland	OH-C	July 8, 2009	Aug 20, 2009	

Results

 Genetic differentiation decreased in late population, less population structure

- Self Assignment (# residents) values correlated with collection time in late populations
 - Later collected populations receive more migrants over time, leads to lower self-assignment

Results

 Spatial autocorrelation detects shift in dispersal pattern from spatially structured in early to random dispersal in late

Conclusions

- Early soybean colonization by soybean aphid involves a founder effect and occurs locally
- Late season dispersal overcomes bottleneck by spreading genetic differentiation among fields
 - Would lead to population admixture, important for IRM?
- More research on mechanisms and markers

Acknowledgements

- George Heimpel, U of MN
- Eileen Cullen, UW
- Geoff Parker, OSU
- Chris DiFonzo, MSU
- X. Bai OSU/OARDC
- Bruce Potter, U of MN
- Kelley Tilmon, SDSU
- Cindy Wallace, OARDC

- Tracey Baute, OMAFRA
- Keith Freewalt, OSU
- Jane Todd, OSU
- Wei Zhang, OSU
- Christian Krupke,
 Purdue
- Nick Sieter, Purdue
- M. Gardiner, OSU

Funding:

Our soybean checkoff. Teffective. Efficient. Farmer-Driven.

Ohio Soybean Council